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Abstract
We adopt extreme value theory to estimate the upper limit of the next record-breaking

magnitudes of induced seismic events. The methodology is based on order statistics and

does not rely on knowledge of the state of the subsurface reservoir or injection strat-

egy. The estimation depends on the history of record-breaking events produced by the

anthropogenic activities. We apply the methodology to three different types of indus-

trial operations: natural gas production, saltwater disposal and hydraulic fracturing. We

show that the upper limit estimate provides a reliable and realistic upper bound for

magnitudes of the record-breaking events in investigated datasets including 15 publicly

available datasets. The predicted magnitudes do not overestimate the observed magni-

tudes by more than 1.0 magnitude unit and underestimation is rare, probably resulting

from insufficient sampling of the statistical distribution of the induced seismicity. The

richest dataset, sourced from downhole and surface monitoring of the Preston New Road

hydraulic fracturing, provides reliable estimates of the magnitudes over three orders of

magnitudes with only slight underprediction of the largest observed event. While the

detection of weaker events improves the performance of the method, we show that it

can be applied even with a few observed record-breaking events to provide reliable esti-

mates of magnitudes. However, care must be taken to ensure that event catalogues are

estimated consistently across a range of magnitudes.
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INTRODUCTION

It is well established that the injection or production of flu-
ids into or from the subsurface can cause induced seismicity
(Healy et al., 1968). Injection of fluids can lead to geomechan-
ical destabilization from decreasing effective normal stress
with increasing pore pressure (Zoback, 2007). Alternative
mechanisms of triggering such as fault reactivation due to
cooling (Kivi et al., 2022), compaction (Segall, 1989; Vlek,
2019) or stress changes (Kettlety et al., 2020) have also been
identified. The wide range of possible mechanisms that can

cause induced seismicity, combined with the lack of knowl-
edge of the underground stress, temperature and fault structure
leads to poor a priori predictability of induced seismicity in
space, time and size.

Mitigation of induced seismicity hazard has, therefore,
mostly been implemented through the so-called traffic light
systems (TLSs; Bommer et al., 2006). TLSs require real-time
seismicity monitoring, with mitigating actions implemented
as pre-defined magnitude and/or ground motion thresholds
are crossed. Specifically, many regulators and operators
decide on two thresholds. When the lower threshold (‘amber
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light’) is exceeded, a set of mitigating actions is taken and
when the higher threshold (‘red light’) is exceeded, a more
severe action, usually that of suspending the underground
operation, is taken. The methodology of setting these thresh-
olds is a topic of current scientific and political discussion
(Schultz et al., 2021; Verdon & Bommer, 2021).

TLS thresholds are generally derived from the levels of
acceptable, undesirable and unacceptable ground shaking due
to induced seismicity. Undesirable levels might be represented
by shaking that is above the background seismic noise for the
area, where nearby people may sense the earthquake (Mer-
cali intensity II). Unacceptable levels might be represented by
shaking of sufficient energy to cause damage to buildings and
infrastructure. However, TLSs are retroactive – actions are
taken in response to larger events, rather than in anticipation
of them. The occurrence of sharp magnitude ‘jumps’ (where
an event significantly larger than any preceding event occurs)
and ‘trailing events’ (where magnitudes continue to increase
after the injection has stopped) mean that an appropriate gap
between the red-light threshold and an ‘unacceptable’ level of
shaking must be set to ensure that the latter is not breached
(Verdon & Bommer, 2021).

INDUCED SEISMICITY FORECASTING

As an alternative to traffic light systems (TLSs), there is
a clear potential to manage induced seismicity through the
use of forecasting models. In this approach, models are used
to forecast the expected magnitude of upcoming seismicity,
with changes in operations being made, if the models indi-
cate that an unacceptable level of seismicity is likely to occur.
Even where TLSs are used, operators may wish to make
use of such methods to ensure they stay below a red-light
threshold at which point they would otherwise be forced to
suspend operations.

A range of forecasting methods have been proposed. Some
approaches have used numerical geomechanical modelling,
either directly simulating fault reactivation (Palgunadi et al.,
2020) or as input to hybrid physics-based models where mod-
elled stress changes are used to inform the locations and rates
of resulting seismicity (Dahm et al., 2015; Verdon et al.,
2015). However, while such simulations clearly have utility
in understanding the factors that might promote or inhibit
induced seismicity, the use of numerical geomechanical mod-
els for induced seismicity forecasting is challenging. The
ability to obtain sufficient subsurface information to pre-
dict induced seismicity (faults, stress, spatial variations in
mechanical properties, etc.) is fundamentally limited by the
resolution of geophysical surveying methods (Nantanoi et al.,
2022). The lack of understanding of the mechanisms for trig-
gering induced seismicity also limits deterministic prediction.
Furthermore, to be operationally useful, seismicity forecasts

may be required in very short timescales (typical hydraulic
fracturing and geothermal stimulation operations take place
over a period of hours to days), and it can be challenging to
generate numerical model results at a usable rate.

A widely applied ‘family’ of forecasting methods are sta-
tistical models where the levels of seismicity are scaled to
a metric of industrial activity, such as the injection or pro-
duction rate (Halló et al., 2014; Mancini et al., 2021; Shapiro
et al., 2010; van der Elst et al., 2016). The scaling between the
induced seismicity rate and the industrial activity is character-
ized at an early stage in the process. It is then assumed that this
scaling will persist through the operation, and the rates of seis-
micity are extrapolated to some planned final state (e.g., the
total injected volume), from which the final expected earth-
quake population (and thereby the largest event size) can be
estimated. This type of method has been used to manage seis-
micity during stimulation of the Helsinki geothermal project
(Kwiatek et al., 2019) and during hydraulic fracturing of the
Preston New Road shale gas wells in Lancashire, UK (Clarke
et al., 2019; Kettlety et al., 2021). While this type of approach
has shown some predictive capability, there are challenges
in their application. For example, in assigning fluid volumes
where there may be multiple injection and production wells
or in deciding whether it is necessary to agglomerate multiple
injection wells and/or stages into a single forecast, or treat-
ing each as a separate injection instance (Clarke et al., 2019).
These methods may struggle when the initial injection (dur-
ing which time the model is calibrated) has not reached a large
fault, but subsequent reactivation of such a feature produces
a sudden change in the levels of seismicity as a function of
injection (Kettlety et al., 2021).

An alternative statistics-based approach uses extreme value
theory to predict the size of the largest seismic event. This
approach is not dependent on subsurface models or knowl-
edge of planned industrial operations (such as injection rates
and planned volumes). It has been developed for statistical
assessment of maximum values of some observations (Tata,
1969, and later refined by Cooke, 1979, for the prediction of
bounds of random variables). The applications of the extreme
value theory range from ranking of swimming records (Spear-
ing et al., 2020) to prediction of flooding (Barlow et al., 2020)
and include the prediction of largest seismic events, whether
natural (Van Aalsburg et al., 2010; Yoder et al., 2010) or
induced (Cao et al., 2020; Mendecki, 2012, 2013; Verdon and
Bommer, 2021; Varty et al., 2021).

Statistical methods of predicting the largest event do not
require a physical understanding of the underlying mecha-
nism of induced seismicity. In fact, these methods are valid
for arbitrary mechanisms of induced seismicity and under-
ground distributions of faults, stresses or other parameters
but require sufficient sampling of the distribution of the vari-
ables before making meaningful predictions. This makes their
application to induced seismicity attractive as the monitoring
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INDUCED SEISMICITY IN ENERGY INDUSTRIES 3

networks may provide complete sampling of induced seis-
micity from the start (so long as monitoring networks are
installed before the anthropogenic activity begins), and the
sampling may start at very weak events if the network is
appropriately designed. We note in passing that this is not
the case with natural seismicity. A potential drawback of this
approach, much like the volume-based methods described
above, is the implicit assumption that the distribution of
induced seismic events does not significantly change during
the anthropogenic operations.

The mining industry has already abandoned the predic-
tion of possible maximum magnitudes using models based
on mined volumes as the volumes accounting for seismic
and aseismic deformation are not known, and often a seismic
monitoring array is installed only once significant seismic-
ity occurs. The current methodologies (Mendecki, 2016)
periodically update the maximum possible magnitude asso-
ciated with extraction as the mining and induced seismicity
progresses. Instead, based on observed seismicity, the next
record-breaking event (NRBE) and upper limit of the next
record-breaking (UL) magnitudes are determined as the most
likely and maximum possible magnitudes, respectively.

Cao et al. (2020) applied these estimates to several datasets
including the Groningen gas field. Verdon and Bommer
(2021) evaluated the performance of the NRBE method
using a wide range of hydraulic fracturing-induced seismic-
ity datasets. They found that the NRBE method had an
85% success rate in predicting the next breaking magni-
tude while avoiding large overprediction, suggesting that the
NRBE estimate provides realistic values for maximum mag-
nitude prediction for hydraulic fracturing-induced seismicity.
In this study, we have updated the UL and NRBE method-
ologies to correctly account for maximum magnitudes and
show that the UL methodology provides a real upper bound
for maximum magnitudes based on observed self-consistent
catalogues of seismic events. We emphasize the importance of
the catalogue self-consistency, as inaccurate magnitude deter-
mination resulting from an inconsistent borehole and surface
catalogues does not provide correct estimates.

METHODOLOGY

The methodology proposed by Mendecki (2016) consists
of two estimates of the next record-breaking event – its
upper limit magnitude (UL) and the most likely magnitude
(NRBE). The UL estimate defines the maximum magnitude
for a truncated power law distribution of the next seismic
event. The UL is estimated only from the previously observed
extreme values (in our case previously observed maximum
magnitudes). Specifically, the order statistics estimate the
next extreme event from the time evolution of the previ-
ously observed extremes. The sole requirement of this method

is that the distribution of magnitudes is continuous: this
assumption is more general than predictions based on pre-
sumed distribution functions (such as the Gutenberg–Richter
relationship). Kijko (2004) develop various formulations for
maximum magnitudes using extreme value estimators where
the Gutenberg-Richter relationship is, or is not, assumed
to hold.

In the simplest example, in a dataset where we observe only
two record-breaking magnitudes (𝑋1 and 𝑋2, 𝑋1<𝑋2)), the
order statistics would predict that the UL magnitude would
be 𝑋2 + (𝑋2 −𝑋1). In other words, we forecast that the next
magnitude increase will not exceed the previous magnitude
increase. Cooke (1979) shows that for any underlying distri-
bution the estimate of the UL can be made from the previously
observed extreme values:

𝑀UL= 𝑀Maxo + Δ𝑀Max (1)

Δ𝑀Max = 2Δ𝑀Maxo −
∑𝑛−2

𝑖=0

((
1 − 𝑖

𝑛 − 1

)𝑛−1

−
(
1 − 𝑖 + 1

𝑛 − 1

)𝑛−1]
ΔMaxo − i, (2)

where ΔMaxo − i is the ordered differences in magnitude
between previous record-breaking events. 𝑛 is the number
of previous record-breaking events. Δ𝑀Maxo is the largest
magnitude difference between record-breaking events. This
formulation was defined as the NRBE calculation in Cao et al.
(2020). We note that Cao et al. (2020) used all observed events
ordered by size and the magnitude differences between all
events ordered by size as the input to these equations. In this
study, we use solely the population of record-breaking events.
This is an important difference between Cao et al. (2020) and
this study.

The 𝑀UL value produced by Equation (1) is the magnitude
value which is not expected to be exceeded by the NBRE.

Mendecki (2016) used potency (seismic moment divided
by shear modulus) as the variable in Equations (1) and (2) to
avoid the sometimes problematic assessment of magnitudes
for small events (Kendall et al., 2019). For simplicity, we
replace the potency with magnitudes in the following, as mag-
nitude is more widely used, it can be directly linked to other
mitigation methods such as traffic light systems (TLSs) and is
the normal input for ground motion models used to compute
the potential impacts of induced seismicity. It is also a more
familiar value for the general public. The derivation assumes
that the NBRE is always smaller or equal to the UL value
and that the underlying distribution of event values does not
change. The assumption of the constant underlying distribu-
tion is somewhat problematic for induced seismicity as the
human activity driving the seismicity changes (e.g., fracking
starts and stops), but Mendecki (2016) shows that this value
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4 CAO ET AL.

gives reasonable estimates in mining settings where involved
rock volumes could rapidly change and, therefore, we can
assume the distribution is also changing only very slowly in
the underground injection/production activities.

It is clear that we need at least two record-breaking events
to predict the upper limit and obviously the prediction of the
next upper limit magnitude should improve with an increasing
number of record-breaking events. Note that Equation (2) puts
the most weight on the largest differences. Hence, even if the
whole catalogue of events is used, instead of just the record-
breaking events, Equation (2) gives very little weight to lower
magnitudes in the catalogue. The forecast is, therefore, depen-
dent mainly on the largest magnitudes in the catalogue. In
other words, the upper limit estimate primarily relies on previ-
ously sampled largest magnitudes to estimate the final upper
limit on the magnitude. Analogously, an average swimmer
does not help to predict the next record-breaking time in
competitive swimming.

Note that the estimator of the upper limit value will improve
with the sampling of the distribution, that is, the number of
observations we have up to a certain time. Mendecki (2016)
discusses the validity of the estimator and the number of
samples needed to achieve reliable estimates of the upper
limit, suggesting that at least seven record-breaking events
are needed to provide a good estimate (see chapter 3.4.1 of
Mendecki, 2016, for more details).

APPLICATION TO THREE TYPES OF
INJECTION OR PRODUCTION
ACTIVITIES

We applied the described methodology to catalogues of
seismic events induced by reservoir production, hydraulic
stimulation and saltwater disposal. The main goal of this
application is to test the reliability of the methodology for pre-
dicting the maximum magnitude of the next breaking event.
Therefore, we sought large catalogues ideally spanning many
orders of magnitude to have as many record-breaking events
as possible.

We start with a catalogue of induced seismicity resulting
from gas production in the Groningen field, in the Netherlands
(Bourne et al., 2014). We use a newly reassessed catalogue of
events (Willacy et al., 2019) containing 1475 events recorded
over 31 years of monitoring and production up to January
2022 (Oates et al., 2022). The catalogue contains all the large
events from December 1991. The strongest, with 𝑀𝐿3.6,
occurred in August 2012. The local seismic monitoring net-
work has been improving over time, particularly in the early
1990s and after 2011, resulting in the detection of weaker
events with time. Hence, the completeness of the catalogue
evolved, being greater than𝑀𝐿2.5 before 1995 (KNMI, 2022)
and greater than 𝑀𝐿1.5 since 1995 (Bourne et al., 2014).

Note that the low completeness before 1991 results in the first
recorded record-breaking event of 2.4, which means a rise of
1.2 in magnitude between 1991 and 2012.

Figure 1 shows the time evolution of observed magnitudes
in the Groningen field for events with 𝑀𝐿 > 0.9. We can
start to predict UL magnitudes from the July 1994 𝑀𝐿2.7
record-breaking event. The UL exactly predicts the magnitude
of the next record-breaking event (NBRE) ML3.0 of October
2003 but underpredicts by 0.2 the August 2006 ML3.5 event.
Prior to the largest event in 2012 (ML 3.6), the UL forecast
was 𝑀𝐿4.0 and provides the current UL for the NBRE at ML
4.2. This seems to be a very reasonable prediction within the
lower bounds of the hazard assessment (NAM, 2022). The
underprediction of the 2006 event probably results from the
small number of record-breaking events up to that time and/or
increased subsidence rates changing the statistical distribution
of events at that period. We cannot exclude also some influ-
ence of magnitude calculation changing with the installation
of greater numbers of stations. Nevertheless, the difference
does not seem too large considering the uncertainty of the
magnitude (at least 0.1). Unfortunately, the magnitude of com-
pleteness for events before 1991 limits the applicability of the
method, it would be greatly beneficial to have a more complete
dataset with historical detections as it is very unlikely that the
seismicity in the Groningen field started with an𝑀𝐿2.4 event.

The next application of the methodology is shown in
Figure 2 for the Quifa oil field in Colombia (Molina et al.,
2020). We used the catalogue of the Colombian Geologi-
cal Service (SGC) and tried to separate seismicity associated
with the Quifa and Rubiales fields, according to the spatial
location of the events. The catalogue spans 8 years start-
ing in 2013 although injection precedes this date (Molina
et al., 2020). The nearest SGC station was 40 km away lim-
iting the threshold detection prior to 2014. After 2014, the
seismic events in the area were detected by both local and
national networks. Therefore, we show only events greater
than 𝑀𝐿2.5. We estimate the magnitude of completeness in
the catalogue and area at 𝑀𝐿2.5 (based on the Gutenberg–
Richter magnitude frequency distribution). The largest event,
recorded in March 2021, had a magnitude of 𝑀𝐿5.0. Using
the two record-breaking events in 2013, with a magnitude
higher than 3.5, we can correctly predict the UL of all later
events except 𝑀𝐿4.3 in March 2014, although that is within
the magnitude uncertainty.

The third application of the UL estimate is for hydraulic
fracturing-induced seismicity at the Preston New Road wells
in northern England in 2018–2019. We applied the method-
ology to combine catalogues of this induced seismicity from
the North Sea Transition Authority with corrected magnitudes
from the borehole and surface stations (Baptie et al., 2020;
Kettlety et al., 2021). The magnitudes of induced events from
the North Sea Transition Authority had to be recalibrated to
produce consistent magnitude estimates between surface and
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INDUCED SEISMICITY IN ENERGY INDUSTRIES 5

F I G U R E 1 Top panel: Magnitude history (red dots) and upper limit magnitude prediction (blue line) for the Groningen gas field (Willacy
et al., 2019). Bottom panel: Comparison between observed record-breaking and computed upper limit magnitudes.

downhole arrays as well as between the 2018 and 2019 stim-
ulations (note that the positions of the surface and borehole
monitoring networks were changed between 2018 and 2019;
Kettlety et al., 2021).

Figure 3 shows different tests considering the injections in
2018 and 2019 as one or two independent injections. The high
sensitivity of the network enables a low magnitude of com-
pleteness. This completeness of combined catalogues from
2018 to 2019 is at least −1.2 based on statistical analy-
sis and lack of events with Mw < −1.2 in October 2018.

These resulted in 16 record-breaking events for the first
stimulation (October to December 2018) and again 16 record-
breaking events for the second stimulation (2019). Combining
the catalogues from both stimulations (2018–2019) gives 19
record-breaking events, that is, 16 record-breaking events
from 2018 and 3 record-breaking events from 2019.

The observed record-breaking magnitudes from induced
seismicity of the stimulation in 2018 match the UL estimate
almost perfectly, the UL mostly exceeds the observation by at
most 0.2. The August–September 2019 stimulation UL values
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6 CAO ET AL.

F I G U R E 2 Top panel: Magnitude history (red dots) and upper limit magnitude prediction (blue line) for the Quifa oil field (Molina et al.,
2020). Bottom panel: Comparison between observed record-breaking and computed upper limit magnitudes.

overestimate the observed record-breaking magnitudes by
0.3–0.4 for the first 13 events. However, the 14th event with
𝑀𝑤1.94 is underestimated by 0.6, and the largest events
of 2019, with magnitudes 𝑀𝑤2.3 and 𝑀𝑤2.8 are overesti-
mated by 1.0 and 0.8, respectively. This considerably worse
performance of the UL estimates for the 2019 catalogue
may possibly result from the fact that the 2018 stimulation
influenced the 2019 induced seismicity. Considering both
catalogues together for 2018–2019, the UL overestimates the
𝑀𝑤1.94 event but it bounds perfectly the event of 𝑀𝑤2.3

and underestimates the event of 𝑀𝑤2.8 by less than 0.2.
These tests are consistent with the potential influence of the
October–December 2018 hydraulic fracturing on the induced
seismicity in 2019. However, this observation is only indirect
evidence of such a long-term effect.

Finally, we use the datasets of Verdon and Bommer (2021),
which represent publicly available hydraulic fracturing-
induced seismicity datasets from a variety of regions. Figure 4
summarizes results for 15 datasets (including the three
datasets discussed in detail above). Most of the observed
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INDUCED SEISMICITY IN ENERGY INDUSTRIES 7

F I G U R E 3 Top panel: Magnitude history (red dots) and upper limit magnitude prediction for induced seismicity by the Preston New Road
hydraulic fracturing, for the first, the second and the first and second stimulations (blue, yellow and green lines). The magnitudes, from the North Sea
Transition Authority catalogues, are obtained from corrected values from the borehole and surface stations. Bottom panel: Comparison between
observed record-breaking and computed upper limit magnitudes.

record-breaking magnitudes are under the UL limit estimate
or only slightly exceed it. For example, all observed events
from the Bao and Eaton (2016) cases (C1–C6) are bound by
the UL except six events, but these events exceed the pre-
diction only by 0.25 at most. The longest record-breaking
series of observed magnitudes is 19 events of the Tony Creek
case (Eaton et al., 2018) (in the Duverney) where 18 mag-
nitudes are correctly bound by the UL, then one event with
record-breaking magnitude change from 1.5 to 2.4 was not
forecast as the previous record-breaking changes were all
smaller than 0.2 in that dataset. Similarly, the UL estimate

fails to bound the magnitude 3.1 event (which followed an
M 1.4 event) in the Karnes (Eagle Ford) sequence (Fasola
et al., 2019) by 1.1 magnitude units, and the magnitude 4.2
event (which followed an M 1.7 event) in the Red Deer ESB10
case (Schultz & Wang, 2020). We surmise that these failures
are most likely related to situations where the nature of the
induced seismicity has changed rapidly (for instance, a new
fault has begun to reactivate as the area affected by stimu-
lation increases), meaning that the foregoing seismicity no
longer provides a useful forecast of upcoming events. How-
ever, through the majority of cases, as illustrated in Figure 4,
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8 CAO ET AL.

F I G U R E 4 Comparison between observed record-breaking and the upper limit magnitude estimate.

the UL provides an upper bound to the next record-breaking
events and the bound does not generally overestimate the next
record-breaking event (mostly by less than 0.2).

DISCUSSION AND CONCLUSIONS

The methodology of the upper limit of the next record-
breaking magnitude is not dependent on information like rate
and volume of injection, size and orientation of faults, stress
state and other parameters assuming some physical model.
This is both an advantage and a disadvantage. We would pre-
fer a deterministic model, but in the absence of a deterministic
model we propose to use a statistical one. The statistics of
record-breaking events reflect the physical processes – in an
area where a small perturbation caused significant induced
seismicity, the increases of the magnitudes will be large and
the upper limit estimate will be large (see, for instance, Eis-
ner et al., 2023). On the contrary, in a stable system where

significant perturbation is required to induce seismicity, the
increases in magnitudes of record-breaking events will be
small and the UL estimate will be only slightly larger than
the previously observed record-breaking event.

A drawback of the methodology is the requirement of as
complete as possible recording of the induced seismicity cat-
alogue (as is the case for any method which uses observations
of ongoing induced seismicity to forecast upcoming magni-
tudes). Our application to case studies indicates that even
as little as two record-breaking events provide a reasonable
upper limit estimate, but we should seek to observe at least
five record-breaking events before predicting the upper limit.
We generalize that the UL estimate does not bound the NBRE
in exceptionally large steps in record-breaking magnitudes,
especially if prior record-breaking events are increasing incre-
mentally. The application to the large number of datasets
shown in Figure 4 illustrates that the UL underestimation
by more than 0.5 occurs mostly when less than five record-
breaking events are available (except for the Tony Creek
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INDUCED SEISMICITY IN ENERGY INDUSTRIES 9

dataset). This implies the need to have a monitoring net-
work capable of recording at least five record-breaking events
before the magnitude of concern. This means the seismic-
monitoring network must be able to detect seismic events at
least 1.5, but preferably 2.0 magnitude units lower than the
magnitude we want to be able to forecast, which is consistent
with conclusions of Verdon and Bommer (2021).

Varty et al. (2021) raised the issue of rounding statistical
variables – such as magnitudes – to the first decimal point,
resulting in statistical bias. This is of particular concern in this
proposed methodology as we use differences in the rounded
magnitudes. We have carried out tests (Mendecki, 2023) with
magnitudes rounded to the first and second decimals place
and obtained similar results for UL bounds. We believe this
can be explained by the fact that in Equation (2) the largest
differences in observed record-breaking magnitudes have the
largest influence on the UL estimate. Larger differences in
magnitudes will be less affected by rounding and therefore,
the UL estimate is relatively unaffected.

We observed issues with self-inconsistency of magnitude
determination for a number of datasets. The magnitudes must
be self-consistent; otherwise, we are not observing the dis-
tribution of natural events but errors, and such data will not
provide useful predictions. This is a sensitive issue for induced
seismicity monitoring where the combined use of data
recorded on downhole, local temporary surface monitoring
and regional networks may result in greater inconsistencies
(Kendall et al., 2019; Kettlety et al., 2021; Viegas et al., 2012)
when compared to permanent surface networks used for natu-
ral seismicity. The UL estimates provide a scientific estimate
of what can be expected if the energy operations continue as
they were up to the chosen time. If such an estimate exceeds
a set threshold, changes in energy extractions can be taken to
alter the distribution of induced events.
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